Control Systems |

Frequency Response

Colin Jones

Laboratoire d'Automatique

The Math

Suppose we have a system with a transfer function G(s), and we drive it with the

input signal u(t) = sin(wt).
To make things simple, drive the system with the complex signal:

u(t) == e/t

! Assume for now that G only has simple poles that are all different from jw
3

System Frequency Response

Describe the behaviour of the system by how it responds to sinusoidal inputs

— 777

sin(wt) —  G(s)

Key take-home:
= The output is a sinusoid of a same frequency with a phase shift of ZG(jw) and a

magnitude of |G(jw)|

Why important?
= Very useful method to experimentally capture the dynamics of a system

= Common control objectives expressed in terms of frequency requirements

= Can determine closed-loop behaviour, from open-loop frequency response

The Math

Suppose we have a system with a transfer function G(s), and we drive it with the

input signal u(t) = sin(wt).
To make things simple, drive the system with the complex signal:

u(t) == !
The output is
Y(s) = G(s)U(s)
1
= G(«
(5) s — Jjw
C1 C2 Cn c
=co+ + S .
s—p1  S—p2 S—Pn  S—jw

where {p;} are the unique, simple poles of G(s)*

! Assume for now that G only has simple poles that are all different from jw



Computing the Steady-State Response

The response to e/“! is

y(t) = cod(t) + c1e? + -+ + e’ 4 e’
If G(s) is stable, then for sufficiently large ¢, this will tend to

y(t) = ce’™!

Steady-State Response

Use superposition to get the response to u(t) = sin(wt)
u(t) = sin(wt) = 1 (ijt — Fﬁjm>
s 57 \° 2

For large ¢ we have that

y(t) = % (G(jw)ej“” — G(_jw)efjwt>

IGGw)l (ejéG(jw)ejwt _ 6fjAG<jw)efjwt)

=5
_ 1GGw)| <ej(4G(jw>+wt> _ e—j(muwwwt))

2j
= |G(jw)| sin(wt + LG (jw))

Computing the Steady-State Response

The response to e/“! is

y(t) = cod(t) + c1e”r + - 4 et 4 ce?!

If G(s) is stable, then for sufficiently large ¢, this will tend to
y(t) = e’

Compute c in the standard fashion:

c= lim (s — jw)G(s)Ul(s)

s—jw

= lim (s — jw)G(s) !

s—jw s — jw

= G(jw)

Steady-State Response

Use superposition to get the response to u(t) = sin(wt)
u(t) = sin(wt) = 1 <ej“’f’ — Pijm>
’ s 5 2
For large ¢ we have that

y(t) = % (G(jw)e'm — G(—jw)e*j“’*)

_ 1GGw)| (ejzc(mejm _ e—jéG(jme—jm)
2j
_ 1GGw)| (ej(zcuwwm) _ e—j(zcuwwwt))

25
= |G(jw)| sin(wt + LG (jw))

If the input is a sinusoid at frequency w, the output is a sinusoid at the same frequency,
with the magnitude scaled by |G(jw)| and the phase shifted by ZG(jw).
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Consider the system §j(t) + 1.19(t) + 0.1y(t) = wu(t) diven by u(t) = sin(1.3t) Consider the system §j(t) + 1.19(t) + 0.1y(t) = wu(t) diven by u(t) = sin(1.3t)
The output is

1 1.3
(s+1)(s+0.1) 52+ 1.32

_ —0.54 085  0.31s+0.45
T os+1 0 s+01 24132

Y(s)=G(s)U(s) =

Taking the inverse transform we get the time response

y(t) = —0.54e" +0.85¢ """ — 0.31 cos(1.3t) — 0.45 sin(1.3t)
= —0.54e" " +0.85¢ " 4+ 0.47sin(1.3t — 2.41)

Note that
G(j1.3) = —0.35 — 0.31j = 0.47¢ >*
!Recall that B cos(wot) + C sin(wot) = Asin(wot 4 ¢), where ¢ = tan ! (%) and A = VB2 + C? !Recall that B cos(wot) + C sin(wot) = Asin(wot 4 ¢), where ¢ = tan ! (%) and A = VB2 + C?
6 6
y(t) = —0.54e" 4+ 0.85¢ " 4 0.47sin(1.3t — 2.41) y(t) = —0.54e"" +0.85¢ " 4+ 0.47sin(1.3t — 2.41)
1
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0
05| ‘
o5t 0.47sin(1.3¢ — 2.41)
—1 | | | | | | —1 | | | | | | ‘
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Only the sinusoid counts in the long-term.
Initial response is called the transient reponse, the long-term is called the
steady-state response



Frequency Response Complex Sinusoidal Inputs

The frequency response of the transfer function G(s) is the function G(jw) Phase shifted input
u(t) = sin(wt + @)
What is y(¢)?
= |f any of the poles are unstable, Rep; > 0, then the transient will not die-out

lim |e P =
t—oo

o0

= If any poles are on the imaginary axis, p; = jw;, then their response will not die
out either, but will tend to a sinusoid with a frequency of w;.

In these cases, the frequency response is still well-defined, but it no longer defines
the steady-state response!

8 9
Complex Sinusoidal Inputs Complex Sinusoidal Inputs
Phase shifted input Phase shifted input
u(t) = sin(wt + @) u(t) = sin(wt + @)
What is y(t)? What is y(t)?
Change of variables 7 =t + % Change of variables 7 =t + %
u(T) = sin(wT) u(T) = sin(wT)

= y(7) = |G(jw)|sin(wr + £G(jw)) = y(7) = |G(jw)|sin(wT + LG(jw))
Undoing change of variables gives Undoing change of variables gives

y(t) = |G(jw)|sin(wt + ¢ + LG (jw)) y(t) = |G(jw)|sin(wt + ¢ + LG(jw))

Idea: Which time is ‘zero’ doesn't matter when we're talking about a signal running
infinitely far into the past and into the future



u(t) = sin(27/3t) + 1.2sin(xt + 0.3) + 0.8 sin(27/5¢ + 0.4)

What's the steady-output of a system with transfer function G(s), if the system has all
poles in the left half plane?

Consider the simple system
1
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Expect the transient phase to die out around 15 seconds.

u(t) = sin(2m/3t) + 1.2sin(7t 4+ 0.3) + 0.8 sin(27 /5t + 0.4)
What's the steady-output of a system with transfer function G(s), if the system has all
poles in the left half plane?
Superposition gives:
y(t) =|G(527/3)|sin(27/3t + LG (527/3))
+ 1.2|G(yn)|sin(nt + 0.3 + ZG(j7))
+0.8|G(527/5)| sin(2r /5t + 0.4 + LG(j21/5))

) Si‘n(27r/31‘f) |G(j27:'/3)\sin‘(27r/3t‘—|—ZG(j‘27r/3))
: AW

-1 \ \ J | \ \ \ -

1.2sin(mt 4 0.3) 1.2|G(jn)|sin(nt + 0.3 + LG (jm))
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Visualizing the Frequency Response

0
—2 | I | | | Bl
0 10 10 20 30 40 50
13
Visualization: Bode Plot Bode Plots
20 . .
1. Magpnitude plot |G(jw)|
. = Plotted in decibels 20 log,,(|G(jw)]|)
8 O i = X-axis is frequency, usually rad/sec, but sometimes Hz
o = Value above 0 — the output is larger than the input
S -20+ B = Value below 0 — the output is smaller than the input
< = All physical systems will tend to —co decibels as w — co
©
= -40r 4
-60
0
2. Phase plot ZG(jw)
< —1001 A = Generally shown in degrees
ﬁ = X-axis is frequency, usually rad/sec, but sometimes Hz
o -200+ - = Value above 0 — phase advance
§ = Value above 0 — phase lag
& _3001 1
-400 : : :
10° 10' 10° 10° 10*

Frequency (rad/s)



Bode Plots Nyquist Diagram

= Easy to generate directly from data

= Much can be said from a ‘glance’

= Gain at specific frequencies obvious @ 0.5r 1
= Resonance frequencies %
= Bandwidth %
= Stability in closed-loop k= of f
(o))
. et ®
etc g
= Commonly used for control design —05 |
= Control objectives commonly described using Bode plot
= Can be generalized to multi-input / multi-output systems _ ‘ ‘ ‘ ‘
—1.5 -1 -0.5 0 0.5 1

= ‘Easy’ to sketch manually Real Axis

= Generally used for more theoretical analysis

= e.g., robust stability, robust performance, etc
= Significantly more complex to draw

= We could spend weeks learning this...

= I'll just say “Use a computer” - nyquist (G)
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Atomic Force Microscope

Detector and
Feedback

Electronics

Photodiode

. . Laser
Example: Atomic Force Microscope ,

I

Sample Surface Cantilever & Tip

PZT Scanner

Ymage: Wikipedia



Atomic Force Microscope: Student Experiment

Laser
Adjustment*"

Nanocube

’

l " Manual Y

Manual X

Microscope

Generating a Bode Plot: Method 1

Drive the system with the input u(t) = sin(w;t) for several w;'s

Generating a Bode Plot: Method 1

Drive the system with the input u(t) = sin(w;t) for several w;'s

WARAAARARARS
MAARRRERARN
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Generating a Bode Plot: Method 1

Drive the system with the input u(t) = sin(w;t) for several w;'s

0.5 0.5
0 0
-0.5 -0.5
I I I I I I I I
11.4 11.6 11.8 12 12.2 12.4 5.7 5.8 5.9 6 6.1 6.2
w = 2750 |G(jw)| =T7.14 - 10" /G (jw) = —2.63 w = 271100 |G(jw)| =5.61- 107" /G (jw) = —2.26

20

20



Generating a Bode Plot: Method 1

Drive the system with the input u(t) = sin(w;t) for several w;'s

05
ol
-0.5F
‘ ‘ ‘ ‘
057 0.58 0.59 06 0.61 0.62
w = 271000 |G(jw)| = 3.92-1072 /G(jw) = —1.35

20

Generating a Bode Plot: Method 1

Drive the system with the input u(t) = sin(w;t) for several w;'s

0.5
0
-0.5
0.285 0.29 0.295 0.3 0.305 0.31
w = 272000 |G(jw)| = 6.80- 1072 /G (jw) = —2.33
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Generating a Bode Plot: Method 1

Drive the system with the input u(t) = sin(w;t) for several w;'s

0.38 0.385 0.39 0.395 0.4 0.405 0.41

0.415
w = 271500 |G (jw)| = 3.16-1072

/G(jw) = —2.11

20

Generating a Bode Plot: Method 1

Drive the system with the input u(t) = sin(w;t) for several w;'s

w = 2w2498 |G(jw)| = 1.33 /G (jw) = —0.85

20



Generating a Bode Plot: Method 1

Drive the system with the input u(t) = sin(w;t) for several w;'s

0.5

o

0.19 0.192 0.194 0.196 0.198

w = 273000

G(jw)| = 6.16-107>

0.2

0.202 0.204 0.206 0.208

G(jw) =

—0.84

20

Generating a Bode Plot: Method 1

Drive the system with the input u(t) = sin(w;t)

AL

0.5

) for several w;'s

NANAS

YUVVYIEy

0.095 0.096 0.097 0.098 0.099

w = 276000

G(jw)| =5.25-10"2

0.101

0.102 0.103 0.104

G(jw) =

—1.40

20

Generating a Bode Plot: Method 1

Drive the system with the input u(t) = sin(w;t) for several w;'s

0.

5

1 1 1
0.142 0.144 0.146 0.148 0.15 0.152 0.154 0.156

w = 274000 |G (jw)| = 1.67-1072 /G (jw) = —1.07

20

Generating a Bode Plot: Method 1

Drive the system with the input u(t) = sin(w;t) for several w;'s

0.

U'I

o

'u1

AL
Y

0.081 0.082 0.083 0.084 0.085 0.086 0.087 0.088 0.089

w = 277000 |G(jw)| = 3.54-107° ZG(jw) = —1.50

20



Generating a Bode Plot: Method 1

Drive the system with the input u(t) = sin(w;t) for several w;'s

0.

[

o

[
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w = 278000 \

jiill
ik

—1.55

5

G(jw)| = 3.06-107° Gjw) =

20

Better: Frequency Sweep

Sweep from foHz to fyHz in t, seconds

Input

10

u(t) = cos((t))

)

| | L1

2 4 6 8 10
Time (seconds)

22

Put Sampled Points on Plot

100

Phase (degrees)

Frequency (Hz)

Problem: Need a *lot* of points to get a good fit

21

Output in Response to the Frequency Sweep

Output

10

1 1 1 1 1 1 1 1 1

5 10 15 20 25 30 35 40 45 50
Time (seconds)

23



Obtaining the Frequency Response Experimentally Interpreting the Frequency Response

Recall the definition of frequency response:
8.88 - 10%(s® + 780s + 1.69 - 10°)

L Y(jw) G(s) =
Gw) = TGw) () = {5 73000) (s + 1000)(s 1 100)(s2 + 505 + 6.25 - 10%)
and note that Y (jw) is the discrete-time Fourier transform of y(k). We just compute 0
the Fourier transform of y(k) and u(k), and take their difference =
T 20t
0 [0}
o) 3 -40r
< 10 g =
8 S 601
’ 2 -s0f ]
g -30 il o~ S Cr—
e § —2001
g |
@~ 1 < _ L
£ _600 8 o —600 i
1 4 101 102

—_
o

Frequency (rad/s)

Frequency (rad/s)
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Matlab Commands

The computer way: Grid w, compute and plot.

24

sys = tf([1 0],[1 -0.4 2]); % Define system
bode(sys); % Show bode plot

Recall: Sketching Bode Plots
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Sketching Ratio of Polynomials on a Log-Scale Write in Bode Form

Sketch Bode plot of continuous-time system G(s) Convert to Bode form

(st z)(s+z) (o +1)(jwra + 1) -

G = G(i — el
) = o) +p2) Vi) = 0l G 4 D Gomo + 1) -
Goal: Sketch G(jw) Example:
For any w we have a complex number in the form G(s) = 155" (ris + 1) (m2s +1)
0 jo (r3s +1)(Tas + 1)
G(jw) = S152 rie’ " rae’” _ T2 j(01+02—05-04—05)
s3sass  r3elf¥sryeifirsei®s  rarars The magnitude then of the form
So the magnitude is linear in a log-scale, and the phase is linear 201log, |G(jw)| = 201log,o 15 4 201og,, [jwTt + 1| + 201og,, |jwTe + 1]

201og,o |G(jw)| = 201og,, 1 + 201log, 2 — 201og,, r3 — 201og,, 14 — 201og,, 75 —20logy |jwTs + 1| — 201logy, [jwTs + 1

LG (jw) =01+ 62 — 03 — 04 — 05

27 28
Standard Elements Integrator / Pole at Zero K((jw)"
All transfer functions are made of three types of terms Magnitude
L. Ko(jw)" 201og ;o [Ko(jw)"| = 201og, | Ko| + n20log;, [jw]
2. (jur+1)*

. This is a straight line with slope of n x (20 decibels per decade).

. 2 .
3. KW> +2¢2% 41
w"L w?L
Phase
ZKo(jw)" =n x 90°

The phase is constant everywhere. Each integrator drops the phase by 90°, and each
zero at zero increases it by 90°

29 30



Simple pole / zero (jwr + 1)*! Simple pole / zero (jwr +1)*!

Magnitude 201log, |jwT + 1| Phase /(jwt + 1)

s wr L1 — jwr+1=1 n wr K1 — /1 =0°

. ~1 /(5 1) = 45°
= wr > 1 — JwT + 1= jwr wr= - (j.wTJr )07 0
= wr > 1 — Zjwt =90

Example: jwl0+1 Example: jwl0+1

Break point Y, Break point 11° Asymptote
100 / 40 l /
/ . ///——
= 100 20 i //T
z IGl=14 - 60 /
=2 =] =
3 14 —> 3 + 110 A
= L0 0 S 300 ‘ -
Asymptotes g l/
TTTAs ot
0.1 20 N o _——’// Asymptote
0.01 0.1 100 1000 T
—30°

0.01  0.02 0.1 02 04 1

31 32

Second-order term

Second-order term

Magnitude Magnitude
Very similar to first-order term, with breakpoint at w = wy, Very similar to first-order term, with breakpoint at w = wy,

N2 . .2 _

e S (ffw) T2+l b S (ﬁ) +202 +11
N2 . N2 N2 . 2

. win>>1 — <ﬁ> +2<ﬁ+1&<ﬁ> . win>>1 - <ﬁ> +2<#‘:+1§<i}7n>

The magnitude around the crossover frequency is impacted by the damping ratio

. 2 .
|G (jon)| = ’(f”) 24

Wn

n

= |—1+2¢+1"
= |2¢"

So for the most common case of n = —1 (a resonant pole) we have

G (jwn)| = %

33 33



Second order terms

Phase

G = (1

n

2 .
) 120 41
Wn

nw <L Wy — /1=0°

. W R w, — /52 +2¢ +1=90°
. 2

oS w, o 4(]—w) =180°
Wn

34

Y — 1
Second-Order Poles / Zeros  G(w) = 7 vracto/o T YTy B Tq CTy Ty ES

Magnitude

2 20

o

/

o =—\ |.2 < [/ N\

i N /7 =
\k o 0.8 M/ //& \:ﬁ \

ol \ 20 0.6 /?////é?’%ggm \\\j/ / \\

) os | /N

AN | AR \

0.02 \

0.01
0.1

SEaoneOr
S RLio— |

©
~
%
1S
]

02 04 06 081 2 46 810

wlw, i

= Damping ¢
— transient-response overshoot (approx 1/2¢ for ¢ < 0.5)
— peak in frequency response magnitude

= Natural frequency w,,
— approximately equal to bandwidth
— proportional to the rise time

36

Second-Order Poles / Zeros

1
Glw) = = A
(Jw/wn)? + 2¢(jw/wn) +1
19 T T o0 20 0 =
J\_—¢ 1" \§ .
6 L =005
4 N =
02 - =09 |02
: angs RSN\
o ?|§ Aéfs \ 0 —60° 03 N\
=
. N}
E 04 09 s -90°
0.1 A N 20 —120°
006 N
00 \\ —150° ~
0.02 N\ F \§§§
0% 02 04 06 081 2 46 810 I 02 04 06 081 2 4 6 810

wlw, wlw,
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Unstable Poles and Non-minimum Phase Zeros

What happens if the pole/zero is in the right half plane?

Gi(jw) = jwr +1 Go(jw) = jwr — 1

Magnitude
1G1(jw)| = G2 (jw)]

Magnitude is the same

Phase
n wr K1 — /LG (jw) =0° LG2(jw) = 180°
= wr 1 — LG (jw) = 45° LG (jw) = 135°
s wr>1 o ZGi(jw) = 90°  ZGa(jw) = 90°

Phase goes in the opposite direction for RHP poles / zeros

37



Understanding Bode Plots Three Indicative Examples

Magnitude 2000(s + 0.5)
1. G(s) = ———F——~=
(#) = S5 11015 + 50)
= Each zero increases the slope by 20dB/dec 10
2. G(s) = —5——"F7—=
= Each pole decreases the slope by 20dB/dec (5) s(s? +0.4s +4)
= Complex poles/zeros have a resonant peak; larger with lower damping ratio 3. G(s) = 5T 1
s+
= Physical systems must have a negative slope as w — oo
= Slope changes occur at pole/zero locations
Phase
= Negative zero — 90°, positive zero — —90°
= Negative pole — —90°, positive pole — 90° Detailed summary of plots on Moodle (and in exercises)
= Physical systems must have a negative phase as w — oo
= Phase changes begin/end ~ 1/2 decade before/after poles/zeros
38 39

The steady-state output of a linear system in response to a sinusoid is a sinusoid of the
same frequency with a phase shift of:

= /G(jw) and a magnitude of |G (jw)|

Why important?

Summary = Very useful method to experimentally capture the dynamics of a system

= Common control objectives expressed in terms of frequency requirements

= Can determine closed-loop behaviour, from open-loop frequency response

In coming weeks we will use the Bode plot of the open-loop system to:

= Compute key metrics defining the robustness of the system

= Shape the response of closed-loop system by ‘modifying’ the bode plot with a
controller

40



